
Using X-Machines as a Formal Basis for
Describing Agents in Agent-Based Modelling

Simon Coakley, Rod Smallwood and Mike Holcombe
University of Sheffield

North Campus, Broad Lane, Sheffield, S3 7HQ, UK

{ S. C o akl e y, R . Sm al l wo o d, M . H o l co mb e} @dcs . s he f.ac. uk

Keywords: X-machines, systems biology, agent-based,
formal, architecture

Abstract
This paper overviews a formal agent-based modelling
architecture that has been designed around the need
for multi-agent modelling of biological cells with re-
spect to inter-cellular signalling and tissue, and intra-
cellular pathways. The specific aim is to provide a
way to formally describe individual components of a
biological system as agents using a generic framework
that is applicable to any system. This paper proposes
the formalisation of agents as communicating com-
puting machines, based on communicating stream X-
machines. The inherent parallel ability of the archi-
tecture is described by the use of local message lists
and models are described that are currently in devel-
opment using the architecture.

1. INTRODUCTION
With the increasing use of agent-based modelling in
biology, modelling cellular interactions, epithelial cells
[1], cell signalling pathways [2], and ant foraging trails
[3], a common formal development architecture would
provide a platform for formally defined models. This
is essential for verification and validation, important
for future models having a part in drug development,
and for advancing collaboration and understanding
between researchers. By describing agents as au-
tonomous communicating machines, agent models are
inherently parallel, an essential feature when trying
to run future simulations of millions of cells in a tis-
sue model. A framework is in development for this
agent representation. This includes an agent repre-
sentation specification, a parser that translates agent
descriptions into executable code for serial and paral-
lel computers, and results analysers and viewers. The
visual results of a model can be seen in Figure 1 for
the intra-cellular NF-κB pathway.

Figure 1. Visualisation of agents in the NF-κB
pathway model showing proteins in the cytoplasm
and the nuclear receptors on the surface of the nu-
cleus [2]

The main reasons to create a formal agent-based
architecture include:

• the ability to understand biological systems not
just as components but as a system

• the provision of a clearer mode for collaboration
between modellers and biologists by the use of
a one-to-one mapping of biological entities to
computational agents

• the creation an open format for better collabo-
ration and understanding

• the use of formally defined agents as a basis for
the validation and verification of models

Agent-based models are also intrinsically parallel
which supports the aim of building more comprehen-
sive models with large numbers of advanced agents.

SpringSim'06 33 ISBN 1-56555-303-9

mailto:S.Coakley@dcs.shef.ac.uk,R.Smallwood@dcs.shef.ac.uk,M.Holcombe@dcs.shef.ac.uk

The modelling architecture has been designed with
running models in parallel from the onset.

2. AGENTS AS FORMAL MACHINES
In general agents in agent-based modelling are com-
ponents of a processing and communicating system.
Agents can hold information, receive external infor-
mation, process information, and act upon any re-
sults by changing internal information and sending
information externally. To formally define agents a
representative model is needed that includes the abil-
ity to hold information, process information, and com-
municate information. Classically, cellular automata
have been used to describe a simple agent system
made up of state machines (a model of behaviour
composed of states, transitions and actions). This
model is too simple to accommodate the complexi-
ties of biological systems that we are interested in
modelling. Therefore a new model is proposed based
around the X-machine computational model.

2.1 Cellular automata
Cellular automata [4] can be described as a frame-
work for defining interacting components in a system.
They consist of an array of cells, each of which can be
in one of a finite number of possible states. Each cell,
or agent, is defined in space with predefined commu-
nications to neighbour agents. Each agent has a state
that is defined in the next time step as a logical oper-
ation on its neighbours states and its own state. Each
agent is formally a finite state machine. Finite state
machines are defined as being comprised of a set of
states, a set of input symbols, an initial state, a set of
accepting states, and a set of transitions where tran-
sitions are defined from a state to another state using
input symbols.

Definition. A finite state machine is an 5-tuple:

FSM = (Q, Σ, T, q0, F)

where:

• Q is the finite set of states

• Σ is a finite alphabet of input symbols

• T is the function from Q × Σ → Q (the transi-
tion function)

• q0 ∈ Q is the initial state

• F ⊂ Q is a set of final (or accepting states)

These machines are a powerful way of describing
and implementing the control logic for hardware, ap-
plications, and in this context, agents. They are pow-
erful because they follow simple rules and are easy to
verify. They are also powerful because they can be
used to generate programming code.

Unfortunately non-trivial systems cannot be mod-
elled in this way due to a lack of data representation.
The number of states and the number of input sym-
bols from neighbouring agents start to explode when
additional complexity is added. For a non-trivial one-
dimensional cellular automata with two states per
agent and two neighbours, one per side, the combi-
nation of input symbols (the current state and two
neighbour states) would be 23 = 8. For a simple bio-
logical cell model in two-dimensions, a cell with eight
neighbour cells, and four states, representing the cell
cycle (G1, S, G2 and M) the number of rules needed
in the transition function rises to 49 = 262144.

Agents are also aligned to a grid with static com-
munication and therefore the mobility of agents and
their ability to interact with different agents is lacking
in this model. This is a severe restriction when mod-
elling migration of biological cells in a tissue model,
and protein molecules moving inside a cell. A more
powerful state machine is needed that adds this ca-
pability.

2.2 X-machine computational model
The X-machine computational model [5] has already
been proposed for this purpose [6, 7] and as a formal
model for verifying swarms [8, 9]. X-machines are
similar to finite state machines, however, X-machines
differ in that they have the addition of memory so
that transitions between states can include the mem-
ory and the modification of it.

An X-machine describing a biological cell would
include memory variables holding information about
the cell cycle, cell position, cell size and cell bonds.
The transition between states, which can now oper-
ate on the memory, would include transitions that
update the cell cycle, move the cell by updating the
cell position, grow the cell by updating the cell size,
and create and destroy new and old bonds between
cell neighbours.

A particular type of X-machine has formed the
basis for a specification and modelling language to
define and validate software systems [10]. It has the
ability to describe formally data types and functions
in a intuitive way and is defined as follows:

ISBN 1-56555-303-9 34 SpringSim'06

Definition. A stream X-machine [10] is an 8-tuple

X = (Σ, Γ, Q, M, Φ, F, q0, m0)

where:

• Σ and Γ the input and output alphabets respec-
tively.

• Q is the finite set of states.

• M is the (possibly) infinite set called memory.

• Φ, the type of the machine X, is a set of partial
functions φ that map an input and a memory
state to an output and possibly different mem-
ory state, φ : Σ × M → Γ × M .

• F is the next state partial function, F : Q×φ →

Q, which given a state and a function from the
type φ determines the next state. F is often
described as a state transition diagram.

• q0 and m0 the initial state and initial memory
respectively.

From now on the term X-machine refers to a stream
X-machine. This forms a basis for formally specify-
ing agents as X-machines. The input Σ and output Γ
alphabets are empty sets as the behaviour of agents is
only determined by their memory values, their rules
(defined in the partial (transition) functions) and the
communication between agents.

2.3 Communicating X-machines
The added ability for X-machines to communicate
can be achieved by using communicating X-machines.
A Communicating X-machine model consists of X-
machines that have the ability to exchange messages.
This model can be generally defined as the tuple:

((Cx
i)i=1..n, R)

where:

• Cx
i is the i-th Communicating X-machine in the

system, and

• R is a communication relation between the n
X-machines

There have been several attempts to formally de-
fine a communicating X-machine with different ap-
proaches to defining R. One of the most accepted ap-
proaches uses the idea of a communication matrix
which acts as the means of communication between

X-machines [11]. In this approach the matrix cells
contain messages from one X-machine to another, i.e.
cell(i,j) contains a message from X-machinei to X-
machinej. The approach of using an all encompass-
ing communication matrix is not well suited to the
use of X-machines as agents because:

1. For each agent added to a simulation the num-
ber of interactions between agents rises quadrat-
ically O(n2) which directly affects the size of the
communication matrix.

2. The communication matrix therefore quickly be-
comes too large to store and handle and as
agent communication is usually localised, nearly
all matrix cells would be redundant (sparse).

3. There is no mechanism defined to add newly
created agents or remove existing ones, that is
to say adding and removing rows and columns
from the matrix. This would be fundamental to
agents representing biological cells as they may
divide to produce two daughter agents or die
therefore removing the agent.

In relation to agent modelling frameworks this
is more suitably called an interaction matrix where
agents have direct access to each others memory. This
can be dangerous as formally defined agents can have
their memory changed without a formal way for the
agent to know about it. This can be seen as analo-
gous to objects in the object-oriented programming
paradigm where direct access to an object’s variables
is considered dangerous and public ‘set’ methods should
be used instead to access privately declared variables.
As communicating X-machines only communicate via
messages this also is a way to stop direct access to
agent’s variables.

When communicating X-machines are used to rep-
resent agents in an agent-based model, communica-
tion is usually restricted to interactions with neigh-
bouring agents that are located close to one another.
Two examples of rules which specify when localised
communication can take place are 1) the distance be-
tween two agents must be less than a specified max-
imum or 2) the agents must be in contact with each
other.

2.4 Communicating Messages Via Lists
Newly proposed is the idea of the communication re-
lation R as a collection of global message lists with
each list representing a specific type of message that

SpringSim'06 35 ISBN 1-56555-303-9

a communicating X-machine can use for communica-
tion. Specific message types are defined by the infor-
mation they can hold, for example position informa-
tion or possible interaction and behaviour informa-
tion. The messages that are sent to a message list
can be read by all of the X-machines. This method
is an input centric implementation. In contrast to
the communication matrix where agents would need
to know where to send a message to, the X-machine
reading the messages from a list must use its own
rules. An example is the communicating agent within
maximum communication distance, to decide on ei-
ther discarding or processing the message. By giving
messages the ID of the agent the message is intended
for, the same functionality is obtained as if the mes-
sage was placed in a communication matrix cell.

An X-machine agent model of a biological intra-
cellular pathway would include components such as
protein molecules and nuclear importing and export-
ing receptors [2]. Each of these components would be
modelled as a different X-machine agent. The types
of messages that would be used for them to commu-
nicate would include position messages and bonding
messages. Position messages would be used to de-
termine if an agent is near enough to another agent
and if a bond is possible. Bond messages would then
be used to communicate this bond and agents would
update their memory to acknowledge this fact.

These message lists then have the ability to be
easily localised. There can be many message lists
each having local agents. These local agents only
need to send messages to the local message lists as
most communication is between agents located near
to each other. If a message is sent to a local message
list that can affect an agent on a different message
list, the message needs to be sent to that list to keep
consistency.

In practice the model space is split up into space
partitions, sometimes referred to as domains. In re-
lation to this model each space partition has its own
message lists representing each type of message that
can be sent. Agents that fall into a space partition
are associated with it and the corresponding message
lists. When an agent sends a message it is automati-
cally placed on the local message list, but if an agent
is close to the edge of the space partition (referred to
as the halo region) and has the possibility of affecting
an agent on a neighbouring space partition a copy of
the message is sent to that space partition to place on
its local message list. This idea of only sending mes-
sages between space partitions when necessary trans-

IN

message
 list

memory

F1()

M M’

OUT

S1 S2

S3S4

F2()

F3()

Figure 2. Abstract X-machine model

lates well when space partitions are placed on sepa-
rate nodes on a parallel computing cluster because it
is the communication between nodes that can be the
bottle neck in the computation time.

2.5 Architecture Model
Figure 2 is an abstract representation of the model.
It describes the X-machine agent with its memory,
system states, transition functions between the sys-
tem states, and input and output ports. The figure
currently shows the transition between system state
S1 (the initial state q0) and S2 via the transition
function F1. This transition function contains rules
that can then change the agents memory, M to M ′,
and send and receive messages via the input and out-
put ports. These in turn are connected to message
lists that hold the messages used for communication
between agents.

The simulation runs of a model are currently dis-
crete time step based similar to cellular automata.
But because agents are reliant on communication of
messages there is a global time step after all the X-
machines in a model have completed one transition
function. For example the first transition function of
X-machines in a model could correspond to agents
sending out information (there is no restriction to a
transition functions access of memory or sending and
receiving messages). Each X-machine agent is pro-
cessed in turn (the order is randomised each time so
that no agent has priority over any other) by com-
pleting a transition function. Once all X-machines in

ISBN 1-56555-303-9 36 SpringSim'06

the model have been processed there would then be a
global time step for messages to be sent to respective
message lists. The second transition function could
then be processed on each X-machine agent which
could receive any messages and respond to them. Ef-
fectively the end and the start of transition func-
tions act as a way to synchronise the processing of
X-machines and the communication of messages.

By separating the behaviour of agents into sepa-
rate functions, for example one to handle movement,
modellers can interchange these functions easily with
different versions with few changes needed to the rest
of the model description.

With respect to cellular automata and finite state
machines, the X-machine agent model provides:

• data representation in the form of memory, and

• a communication relation that is not static be-
tween agents.

This provides a formal yet very expressive way to for-
malise agents that can have many attributes (states),
move freely (not aligned to a grid) and communicate
dynamically.

3. X-MACHINE AGENT REPRESEN-
TATION
Now that an agent model has been established an
agent representation is needed so that models are easy
to share and work with. Extensible Mark-up Lan-
guage (XML) is capable of describing many different
types of data. It provides a standard way to share
structured text. By having a defined way to struc-
ture an agent, agent-based models can be created,
edited, shared, and merged between modellers. By
describing an agent as a communicating X-machine
the model can take advantage of existing communi-
cation and modelling systems already built to run X-
machine agents on different platforms. By creating
an open standard for the structure of an X-machine
agent new tools can be built to inter-operate with
the proposed standard. The current design is very
straight forward and uses simple nested XML tags
to describe the structure of an X-machine. Before
the X-machine is defined, ‘environment’ variables and
functions can be defined. These are values and func-
tions that can be used by transition functions of the
X-machine. They typically include static values like
π and functions that are called more than once by the
X-machine. Environment functions can also be used
to make the code of the transition functions more

readable. The X-machine is then divided into its con-
stituent parts:

<xmachine>

<memory></memory>

<states></states>

<functions></functions>

</xmachine>

The X-machine is defined between <xmachine>

and </xmachine>. The X-machine’s memory vari-
ables can then be defined between the memory tags.
As the X-machine will eventually be run as part of a
simulation the variables have to be well defined. At
the moment this is done with respect to C variables.
Variables are defined as having a fundamental type
and a name. For a simple biological cell model the
following memory would allow the representation of
a cell as a point in space with a certain radius and in
a certain point in the cell cycle. The inclusion of an
ID variable allows tracking of each individual cell.

<memory>

<var><type>int</type><name>id</name></var>

<var><type>int</type><name>cell_cycle</name></var>

<var><type>double</type><name>x</name></var>

<var><type>double</type><name>y</name></var>

<var><type>double</type><name>radius</name></var>

</memory>

This example shows variables in the X-machine’s
memory that are of type integer or double and can
be referenced by their name, for example ‘ID’. Other
variables can be added in the same way. At the mo-
ment only fundamental C types are handled but there
is scope to add other data-types, such as arrays.

X-machine states are described inside state tags.
States have fields describing their name, attributes
like the initial state, and any transition functions
to other states. The following state describes the
‘send location’ state which is the initial state. It has
one transition function called ‘send location message’
with destination ‘read locations’ state.

<state>

<name>send_location</name>

<attribute>initial</attribute>

<trans>

<func>send_location_message</func>

<dest>read_locations</dest>

</trans>

</state>

Any transition functions mentioned in the X-machine
states have to be defined as an X-machine function.

SpringSim'06 37 ISBN 1-56555-303-9

The function names have to relate to the names used
already. For example the ‘send location message’ can
be defined thus:

<function>

<name>send_location_message</name>

<code><![CDATA[

add_location_message(get_id(),

get_cell_cycle(),

get_x(),

get_y(),

get_radius());

]]></code>

</function>

As part of a biological cell model this would be
the first function and every cell (agent) would send
a message to the message list that contains their ID,
position, size, and location in the cell cycle. In a sec-
ond function each cell would then read the message
list to determine the cells in its local neighbourhood
and for example if it is overlapping with any cells or if
any bonds are possible. Further functions could han-
dle the creation of bonds (possible additional memory
variables would be needed for cells to register these,
and an additional message type ‘bond’ for agents to
communicate this information) and the movement of
cells.

The code tagged field used in specifying functions
is used to hold the C code describing what rules to fol-
low. The code field adheres to C functionality so com-
ments can be added to it. Code fields are surrounded
by ‘CDATA’ tags so that any XML parser does not
parse C code as XML. The above code describes cre-
ating a new location message, assigning its variables
to hold information from the current agent, and send-
ing the message. This and other inbuilt functions
handle processes that are a part of the architecture
like sending messages, receiving messages, creating
new agents, removing agents, and accessing memory
values.

After every X-machine transition function is ac-
counted for the X-machine is defined. Lastly the mes-
sages that can be sent and received need to be well
defined also. Each message is defined inside a mes-
sage tag, is given a name, and any variables it needs
to hold. The message defined below refers to the mes-
sage used in the above X-machine function.

<message>

<name>location</name>

<var><type>int</type><name>id</name></var>

<var><type>int</type><name>cell_cycle</name></var>

<var><type>double</type><name>x</name></var>

<var><type>double</type><name>y</name></var>

<var><type>double</type><name>radius</name></var>

</message>

The format for the message variables is the same
format as the variables defined in the X-machine’s
internal memory. Many types of messages can be de-
fined with variables for different purposes.

4. X-MACHINE AGENT IMPLEMEN-
TATION
Because the agent-based model is now formally de-
fined, tools can be created to inter-operate with it.
Models can be edited by directly changing the XML
description file with a text editor or with a graphical
user interface. A windows based editor is more acces-
sible and can be created to hide any detail a modeller
does not need to see. Also editors can be created for
certain types of models, for example cellular protein
molecules or tissue cells, so that previously defined
specific functions are already there for the modeller
to use. At the moment an editor is in production to
edit all aspects of the model XML description file.
A parser has been created that converts the model
description (in XML) to a runnable C program via a
C compiler. The parser can produce two versions, a
serial version and a parallel version that uses the mes-
sage passing interface (MPI) library to send messages
between nodes on a computing cluster.

When a model is to be created and solved us-
ing the currently implemented architecture, the X-
machine agent definitions are first loaded from a pre-
defined XML formatted text file. This description file
specifies the memory set of the X-machine ‘M’, the
set of processing states the X-machine can be in ‘Q’,
the initial state q0, the next state partial function ‘F’,
and the communication relation which is taken to be
the types of messages that can be sent ‘R’. As it is
only the behaviour of agents that are loaded from
the XML file, an additional start-up file is required
to specify each agent’s initial condition before a run
of the model can begin. This start-up file is also
an XML formatted text file and defines the initial
memory state of agents ‘m0’. A specially developed
parser takes an X-machine agent description and pro-
duces an executable program (compiled C code) that
can accept a start-up file, run the X-machine agents,
and implements the global message list communica-
tion relation. The parser simply takes the informa-
tion about the X-machine agents in a model and any
messages that can be sent and applies these to a pro-
gram template. In theory the program can be written

ISBN 1-56555-303-9 38 SpringSim'06

in other programming languages but C is used at the
moment.

The model will run for the prescribed number of
iterations given at start time. At each iteration of
the model run, an XML file is saved that contains the
new memory state of the agents in the model. Each
of these files can then be used as the start of a new
run of the model or for the extraction and analysis of
data. The extracted data can be analysed and dis-
played as graphs or used in visual representations of
the agents. Tools have been created for exporting the
results to external applications, allowing the results
to be viewed in an interactive three-dimensional ani-
mation program. Although viewing the agents in two
and three dimensional animations does not give con-
crete results, it can be invaluable for the modeller and
biologists to understand what is happening in a simu-
lation and to communicate ideas. Images and videos
from models in the application section can be viewed
a t h t t p : / / w w w . d c s . s he f .a c. u k/

∼s t c / x - a g e n t s / .
The parallel version of the X-machine agent archi-

tecture has been developed on a dual processor (with
hyper-threading to make it act like a quad processor)
desktop machine. The proposed parallel architecture
has been designed to be very scalable. There is cur-
rent access to a 128 processor cluster with plans to
run models in the near future and talks have already
s ta r te d w ith HP C x (h t t p : / / w w w . h p c x . ac .u k /) to
run models on part of their 1536 processor cluster.

5. X-MACHINE AGENT
APPLICATIONS
The architecture described has been used to model
the social behaviour of epithelial cells, the NF-κB sig-
nalling pathway, and the electrical charge of cardiac
cells.

The Epitheliome Project at the University of Shef-
field, UK, and University of York, UK, aims to de-
velop a computational model that is able to predict
the social behaviour of cells in epithelial tissues [1,
12]. The X-machine agent architecture is being used
to help develop this model. Each epithelial cell is rep-
resented by an X-machine agent with memory holding
information, for example the cell position, cell size,
number of bonds, and position in cell cycle. Mes-
sages are used to communicate size and position and
the making and breaking of bonds.

A model of the NF-κB pathway (a cell signalling
pathway that is vital to immune response regulation)
is being developed [2] and has been partially trans-
fered onto the X-machine agent architecture. Each

protein molecule and nuclear receptor is represented
by an X-machine agent with memory holding infor-
mation about position, velocity, bound state, and
bonding interaction radius. Messages are used to
communicate position and possible bonds. Figure 1
shows a three-dimensional visualisation of the results
created using a purpose built viewing tool.

Another project has used X-machine agents to
define a layer of cardiac cells in order to simulate
the electrical action potential that is diffused through
them during normal and abnormal heart function [13].
Messages in this model are used to communicate elec-
trical charge in each cardiac cell. Although the present
model is grid aligned and similar to a cellular au-
tomata simulation there is scope to arrange the car-
diac cells in the simulation into the shape of a heart
by adjusting the starting positions in memory of the
agents in the initial agent states file.

6. CONCLUSIONS AND
FUTURE WORK

In this paper the practicalities of using commu-
nicating X-machines to define agents in agent-based
modelling are described. A specific area of interest is
the different ways messages can be used as a commu-
nication relation between agents and how this is ide-
ally suited to creating an architecture that can take
advantage of parallel computing machines and sys-
tems. For example instead of a message list structure,
a tree structure could hold information about the re-
lation between agents as well as the messages between
them. And the idea of a node holding lists of X-
machine memory, system states, functions, and pass-
ing messages between nodes using MPI leads to the
formalisation of nodes as communicating X-machines
in themselves.

The currently implemented architecture is explained
with several models mentioned as examples of its
practical application but more in-depth case studies
are needed to fully document the use of the architec-
ture and the use of formal methods. Future work of
the model and its implementation will involve:

• fully documented case studies of agent models
and their simulation results,

• the experimentation of different communication
relations between communicating X-machines,

• the use of X-machine agents as a formalism with
analytic results used to help verify or guide the
simulation efforts,

SpringSim'06 39 ISBN 1-56555-303-9

http://www.dcs.shef.ac.uk/%E2%88%BCstc/x-agents/%00
http://www.hpcx.ac.uk/

• scaling up the parallel version for running sim-
ulations with hundreds of thousands of agents,

• and the creation of tools for modellers to use,
create and edit X-machine agent models.

ACKNOWLEDGEMENT
The authors would like to thank those who provided
the models for testing of the architecture, Dawn Wood
for the epitheliome model, Mark Pogson for the NF-
κB pathway model, Susheel Varma for the cardiac
cell model, and Phil McMinn for the feedback on the
framework. Also those on the Epitheliome Project
and in the Computational Systems Biology research
group for providing valuable input. Simon Coakley is
funded by an EPSRC studentship. The Epitheliome
Project is funded by EPSRC, and NF-κB pathway
research is funded by BBSRC and MRC.

References

[1] DC Walker, G Hill, SM Wood, RH Smallwood,
and J Southgate. Agent-based computational
modeling of wounded epithelial cell monolay-
ers. IEEE Transactions in NanoBioscience,
3(3):153–163, September 2004.

[2] M Pogson, E Qwarnstrom, R Smallwood, and
M Holcombe. Formal agent-based modelling of
intracellular chemical reactions. Biosystems (to
appear), 2006.

[3] DE Jackson, M Holcombe, and Ratnieks FLW.
Trail geometry gives polarity to ant foraging net-
works. Nature, 432:907–909, December 2004.

[4] S Wolfram. A New Kind Of Science. Wolfram
Media, 2002.

[5] S Eilenberg. Automata, Languages, and Ma-
chines. Academic Press, 1974.

[6] M Holcombe. X-machines as a basis for dynamic
system specification. Software Engineering Jour-
nal, 3:69–76, 1988.

[7] E Kehris, G Eleftherakis, and P Kefalas. Us-
ing X-machines to model and test discrete event
simulation programs. Proceedings of 4th World
MultiConference on Circuits, Systems, Commu-
nications & Computers, 2000.

[8] CA Rouff, MG Hinchey, W Truszkowski, and
JL Rash. Verifying large numbers of cooperating

adaptive agents. 11th International Conference
on Parallel and Distriuted Systems, June 2005.

[9] C Rouff, W Truszkowski, J Rash, and
M Hinchey. Formal approaches to intelligent
swarms. 28th Annual NASA Goddard Software
Engineering Workshop, 2003.

[10] M Holcombe and F Ipate. Correct Systems:
Building A Business Process Solution. Springer-
Verlag, 1998.

[11] T Balanescu, AJ Cowling, M Georgescu, M Hol-
combe, and C Vertan. Communicating stream
X-machines are no more than X-machines. Jour-
nal of Universal Computer Science, 5(9):494–
507, September 1999.

[12] DC Walker, J Southgate, M Holcombe,
DR Hose, SM Wood, S Mac Neil, and RH Small-
wood. The epitheliome: Agent-based modelling
of the social behaviour of cells. Biosystems,
76((1-3)):89–100, August 2004.

[13] RH Clayton. Computational models of nor-
mal and abnormal action potential propaga-
tion in cardiac tissue: linking experimental and
clinical cardiology. Physiological Measurement,
22(3):R15–R34, 2001.

ISBN 1-56555-303-9 40 SpringSim'06

	TITLE PAGE
	PROCEEDINGS LIST
	ADS Table of Contents
	ACROBAT HELP
	Using X-Machines as a Formal Basis for Describing Agents in Agent-Based Modelling
	Keywords:
	Abstract
	1. INTRODUCTION
	2. AGENTS AS FORMALMACHINES
	2.1 Cellular automata
	2.2 X-machine computational model
	2.3 Communicating X-machines
	2.4 Communicating Messages Via Lists
	2.5 Architecture Model

	3. X-MACHINE AGENT REPRESENTATION
	4. X-MACHINE AGENT IMPLEMENTATION
	5. X-MACHINE AGENT APPLICATIONS
	6. CONCLUSIONS AND FUTURE WORK
	ACKNOWLEDGEMENT
	References

