Simple SIR Infection Model in FLAME

David Worth, Chris Greenough, Shawn Chin

Software Engineering Group
Computational Science & Engineering Department
Rutherford Appleton Laboratory

david.worth@stfc.ac.uk, christopher.greenough@stfc.ac.uk, shawn.chin@stfc.ac.uk
Background

- Transfer NetLogo infection model to FLAME
- Agents move randomly on torroidal domain
- One of 3 states
 - Susceptible
 - Infected
 - Removed (immune)
- Birth and death included
- Spread controlled by
 - Infectiousness, chance of recovery, duration of virus
One Iteration

- Agent moves
 - 1 unit in direction ±100º of current heading
- Infected agents post location
- Susceptible agents read locations
 - Look for messages within their 1x1 patch
 - Calculate chance of becoming infected
 - Based on infectiousness
- Infected agents calculate chance of recovery
 - Based on duration of virus & chance of recovery
- Non-sick agents have chance of reproducing
 - Up to carrying capacity
 - Based on agent lifespan & average number of offspring
Implementation

- One **Person** agent
 - Agent identification: **Id**
 - Position: x, y (double) and **heading** (double)
 - State flags: **is_sick**, **isimmune**
 - Counters: **sick_count** (how long infected), **age** (how old)

- One **infected** message
 - Agent id: **Id**
 - Position: x, y (double)

- Functions
 - **get_older** (Start \Rightarrow 1)
 - **move** (1 \Rightarrow 2) Output **infected** message
 - **infect** (2 \Rightarrow 3) Input **infected** message
 - **recover** (3 \Rightarrow 4) Depends on **infect** function
 - **Reproduce** (4 \Rightarrow End) Depends on **recover** function
Agent Creation

- Required by `reproduce` function
- Need **unique ids**
- New agent created from existing one so use existing id as basis
 - Add on global number of agents * current iteration number
 - Increment global number of agents
- OK because agents only have one child per iteration
- Not complete solution
 - Global number of agents changed by other functions
Environment

- Fixed values defining: reproduction, disease, domain
 - Lifespan 100
 - Average offspring 4
 - Carrying capacity – scaled with initial number of agents
 - Infectiousness 65%
 - Chance of recovery 50%
 - Duration of disease 20
 - Domain height – scaled with initial number of agents
 - Domain width – scaled with initial number of agents
Input Data

- Initially same as NetLogo model
 - 150 agents
 - 10 infected (choose first 10)
 - 34x34 domain
 - Carrying capacity = 750
 - Position and heading random uniform distribution

- Other values on previous slide

- Generated with Python script
 - ./init_start_state.py <width> <height> <agent_count>
 - Scale domain with agent count to keep same density
 - Change carrying capacity in script!!
Verification

- Check with NetLogo

NetLogo Results

- Total
- Infected
- Immune
- Healthy

FLAME Results

- Total
- Infected
- Immune
- Healthy
Serial run 15000 agents

Flame Serial Run

Number of agents

0 10000 20000 30000 40000 50000 60000 70000 80000

1 6 11 16 21 26 31 36 41

Total Infected Immune Healthy

7-8 December 2011
Carrying capacity of domain is **global data**
- Split capacity equally between nodes is only choice
- Try to keep agent number same on all nodes therefore...
- Do **round-robin** agent partitioning
- Does give “better” results

Parallel - Round Robin

- **Total**
- **Infected**
- **Immune**
- **Healthy**

Parallel - Geometric

- **Total**
- **Infected**
- **Immune**
- **Healthy**
Pretty Pictures

- Run on HECToR
- 500 cores
- 150000 initial agents
- 750000 carrying capacity

Iteration 10 Iteration 100 Iteration 200 Iteration 300
- HECToR
- 15,000 agents
- Completely unreliable!
Conclusions

- Improvements to FLAME
 - Global variables
 - Update frequency – every change, end of iteration, programmatic
 - Partition of values among nodes – e.g. carrying capacity
 - Geometric partitioning better for infection model if GVs available
 - Halo filters
 - Agent migration if using geometric partitioning

- NetLogo = bad model
 - Missing potential infection because of patches

Infection from this one → Why not this one?